The Permeability of Thin Lipid Membranes to Bromide and Bromine

نویسندگان

  • John Gutknecht
  • L. J. Bruner
  • D. C. Tosteson
چکیده

Thin lipid (optically black) membranes were made from sheep red cell lipids dissolved in n-decane. The flux of Br across these membranes was measured by the use of tracer (82)Br. The unidirectional flux of Br (in 50-100 mM NaBr) was 1-3 x 10(-12) mole/cm(2)sec. This flux is more than 1000 times the flux predicted from the membrane electrical resistance (>10(8) ohm-cm(2)) and the transference number for Br(-) (0.2-0.3), which was estimated from measurements of the zero current potential difference. The Br flux was not affected by changes in the potential difference imposed across the membrane (+/-60 mv) or by the ionic strength of the bathing solutions. However, the addition of a reducing agent, sodium thiosulfate (10(-3)M), to the NaBr solution bathing the membrane caused a 90% reduction in the Br flux. The inhibiting effect of S(2)O(3) (=) suggests that the Br flux is due chiefly to traces of Br(2) in NaBr solutions. As expected, the addition of Br(2) to the NaBr solutions greatly stimulated the Br flux. However, at constant Br(2) concentration, the Br flux was also stimulated by increasing the Br(-) concentration, in spite of the fact that the membrane was virtually impermeable to Br(-). Finally, the Br flux appeared to saturate at high Br(2) concentrations, and the saturation value was roughly proportional to the Br(-) concentration. These results can be explained by a model which assumes that Br crosses the membrane only as Br(2) but that rapid equilibration of Br between Br(2) and Br(-) occurs in the unstirred layers of aqueous solution bathing the two sides of the membrane. A consequence of the model is that Br(-) "facilitates" the diffusion of Br across the unstirred layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Potential of Nanoparticles for Upgrading Thin Film Nanocomposite Membranes – A Review

Over the past decade, many applications were intended for filtration by membrane technology especially the thin film composite (TFC) membranes. In advanced developments of thin film membranes, an attempt was made to spread a new generation of membranes called thin film nano composite (TFN) membranes. However, in the last generation of TFNs, an ultrathin selective film of nanoparticles is coated...

متن کامل

Thin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate

In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...

متن کامل

Nano composite PEBAX®/PEG membranes: Effect of MWNT filler on CO2/CH4 separation

The performances of two-phase polymer-liquid PEBAX®/polyethylene glycol (PEG) and three-phase polymer-liquid-solid PEBAX®/PEG/MWNT thin film composite membranes for CO2 and CH4 permeation were studied. The effect of temperature and MWNT/PEBAX® ratio on single gas (CO2 and CH4) permeability was investigated. The permeat...

متن کامل

Synthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation

Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...

متن کامل

Synthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation

Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 59  شماره 

صفحات  -

تاریخ انتشار 1972